A Brief Introduction to Engineering Graphics

Will Durfee \& Tim Kowalewski
Department of Mechanical Engineering
University of Minnesota

Opening comments

- Engineering graphics is the method for documenting a design
- Mechanical engineering students must be familiar with standards of engineering graphics as it is expected in industry
- This set of slides introduces some of the basics, but is not comprehensive
- For more, see
- Engineering Graphics section on the Resources page of the course ME2011 website
- Any engineering graphics textbook

Documenting a part requires...

1. SHAPE
2. SIZE
3. MATERIAL
4. TOLERANCE
5. FINISH

Engineering drawings

- Universal language
- Conventions (drawing grammar) simplify communication; your drawing is at risk if you defy
- CAD packages make formal drawing easy...if you follow the conventions
- The machinist will laugh at you behind your back if you show up with a non-standard drawing

Multiview drawings

" 3 rd angle projection"

Multiview drawings

500

 Front
" $3^{\text {rd }}$ angle projection"

Multiview drawings

500

Front

" 3 rd angle projection"

Rotate the part to the right (Europe)

The Glass Box:

Alignment \& Orientation are preserved...

Unfolding the "Glass Box"

Six Principle views: obey layout

Basic lines (the "alphabet of lines")

Object line

Hidden line

Center line

Dimension line

HIDDEN LINES

CENTER LINES

Interpreting Center Lines

Enough Info?
Enough Info?

COULD BE THIS...

OR THIS

Centerlines imply symmetry, NOT revolution per se

HERE, ONLY 2 VIEWS NEEDED (Correct drawing)

Find The Mistakes!

FIND THE MISTAKES!

YES

NO

Working with person sitting next to you copy this and draw the TOP VIEW

Possible Geometries

Working with person sitting next to you copy this and draw the TOP VIEW

Working with person sitting next to you, sketch the Section View

Correct Section Views

Working with person sitting next to you, Find the MISTAKES

Working with person sitting next to you, sketch the Section View

DIMENSIONING

1. SHAPE

2. SIZE
3. MATERIAL
4. TOLERANCE AND FINISH

- Conventions exist for

Dimensioning

 choice and placement- Not too many and not too few
- Never should measure off drawing with a ruler

Under/Over Dimensioning

Dimensioning rules:
 ...find the mistakes.

Dimensioning guidelines

1. Don't overdefine or underdefine the object. [MOST IMPORTANT]
2. Dimension to the visible contour or shape of the feature / Don't dimension to hidden lines.
3. Don't dimension to object lines (model edges), use extension lines.
4. Don't overlap a dimension and the model.

Place dimensions away
from the model's surface.
6. Don't cross extension lines if possible.
7. Group dimensions when possible unless it become difficult to read.
8. Place dimensions on the side of the view were adjacent views exist (for easy referencing).

Design Detail

1/2" thick aluminum block
Which is more expensive: A or B and why?

wWW.mcmaster.com

Dimensioning Choices \& Design Intent

 If change width of block to 8 , what happens to the hole location?

Placement conventions

Lettering: 1 or 2 directions only

Extension Lines

All on one side

YES
NO

Dimensioning Rounds

Place dimension on view that shows the circle Show diameter rather than radius

TOLEDEDED

www.efunda.com/processes/machining/drill.cfm
www.efunda.com/processes/machining/drill_press.cfm

Tolerances

- Matter because parts cannot be made to an exact dimension
- Must specify dimension tolerance so that every part A fits every part B
- Higher tolerance = higher cost
- A $1 / 2$ inch hole made on an ordinary drill press gives you a hole in the range 0.496 to 0.504 (+/- 0.004). For higher precision, drill undersize and use a reamer...but it will cost you more and take longer to fabricate.

½ inch drill bit: +/-. 0040

½ inch reamer: +.0003, -. 0000

LEGOS!

- You can combine six 8 -stud bricks of the same color $102,981,500$ different ways
- 91% of all households with children in Denmark own LEGO products
- During the period 1949-1990, 110,000,000,000 (110 billion) LEGO elements were molded
- Bayer Corporation's Polymers Division is the official supplier of ABS plastic to the LEGO group.
- Exact specifications of the Bayer resin supplied to the LEGO Group are a closely held secret.
- Dimension tolerance of mold is 0.005 mm (0.0002 inch)!

Representing tolerances

Tolerance stack-up

What is min and max height of stack?
$3.0 \pm .05$
5 high stack

Tolerance Stacking

What's the tolerance (+/-) on dimension x?

Chain or Baseline Dimensioning?
... You decide

Chain or Baseline Dimensioning

Holes and shafts

\author{

1. Will all shafts fit into all holes?
 2. What is maximum clearance?
}

ANSI standards for shaft \& holes

Clearance	Shaft smaller than hole for all shafts and holes
Interference	Shaft larger than hole for all shafts and holes
Transition	Smallest shaft fits in largest hole

Running/Sliding	RC1 (fit together, no play) to RC9 (fit loosely)
Force/shrink	FN1 (light drive and pressure) to FN5 (high stresses and pressures)
...and others	Like Locational, etc.

Basic hole	Use nominal size of hole as starting point
Basic shaft	Use nominal size of shaft as starting point

Preferred Fit Example...

"Basic Hole" Tolerancing Example

Drawing shows 1 in. nominal, ANSI RC4 clearance fit
"Basic Hole" means smallest possible hole = nominal, then size shaft for clearance

RC4 clearance $=[0.0008,0.0028]=$ [smallest hole-largest shaft, largest hole - smallest shaft]

Title block information for tolerance

ALL DIMENSIONS IN INCHES

HOLD ALL DIMENSIONS TO ± 0.010 UNLESS SPECIFIED

Dimension	Tolerance
X.X	± 0.1
X.XX	± 0.05
X.XXX	± 0.001

Design Detail

Bent aluminum sheet, $1 / 16$ " thick A or B: Which is more expensive and why?

Tolerance vs. Cost

5

5

${ }_{T}^{1}$

P_{T}^{+1}

Manufacturing Tolerances

Size (in.)	Total Tolerance (in.)								
$0.000-0.599$	0.00015	0.0002	0.0003	0.0005	0.0008	0.0012	0.002	0.003	0.005
$0.600-0.999$	0.00015	0.00025	0.0004	0.0006	0.001	0.0015	0.0025	0.001	0.006
$1.000-1.499$	0.0002	0.0003	0.0005	0.0008	0.0012	0.002	0.003	0.005	0.008
$1.500-2.799$	0.00025	0.0004	0.0006	0.001	0.0015	0.0025	0.004	0.006	0.010
$2.800-4.499$	0.0003	0.0005	0.0008	0.0012	0.002	0.003	0.005	0.008	0.012
$4.500-7.799$	0.0004	0.0006	0.001	0.0015	0.0025	0.004	0.006	0.010	0.015
$7.800-13.599$	0.0005	0.0008	0.0012	0.002	0.003	0.005	0.008	0.012	0.025
Operation Lapping/Honing Grinding/Burnishing Broaching Reaming Turning/Boring Milling Stamping/Punching									

Geometric Dimensioning and Tolerancing (GD\&T)

Traditional tolerancing is ambiguous

Ambiguity...

Square deviation

Circular deviation

Geometric Dimensioning and Tolerancing

- Ideal position of hole. . 25 , is marked with box and no +/- notation.
- Feature control box shows how close hole is to exact; within circular tolerance zone with diameter . 01

Geometric Dimensioning and Tolerancing

Feature Control Frame

Note: Order is important

GEOMETRIC CHARACTERISTIC

ZONE DESCRIPTOR
FEATURE TOLERANCE
MODIFIFR
PRIMARY DATUM
REFER=NCE
SECONDARY DATUY
REFERENCE
TERTIARY DATUM REFERENCE

GD\&T Resources

Poh skorvioum FEATURES	TYPE OF TULEANACE	CHAFACTLIEISTIC	รуымлL
	rown	STRAIGITTNESS	-
		Fiatness	77
			O
		crawohicity	A
40 F IMDIVISUAN OH RELATSI tEATURFS	Phohile	PAOELLE OF A LINE	0
		Profilc of Asumrace	D
	GXIEMTATICN	ANGULERITY	\leq
		HERPRSNCACULAIITY	
		PARALIELISN	//
FOR RELATED FEATBAES	LOCAIION	MCSITICN	¢
		congemmmicity	\%
	Rumoit	Cinculak ruwout	*
		TDTAL EidNOUT	2id

ME2011 website:
 https://sites.google.com/a/u mn.edu/me2011/resources

- Efunda tutorial:
http://www.efunda.com/de signstandards/gdt

Threaded Fasteners

What they are and how to indicate on a drawing

Threaded Fasteners

- Holes
- Threads
- Threaded fasteners

Holes

ø. 166 ป. 75

Pix from www.mcmaster.com unless noted

Thru holes

Threads

Threaded Fasteners (screws, bolts)

- Specify diameter, thread, length, head

Common screw thread sizes
Unified Thread Standard

- 2-56
-1/4-20
- 4-40
-3/8-16
- 6-32
-1/2-13
- 8-32
- 5/8-11
-10-24
-3/4-10

DIA. $=\left(\mathrm{N}^{*} .013\right)+.060$ (inches)

Alternate Thread Callout

UNC	Means Unified National Coarse
UNF	Means Unified National Fine
UNEF	Means Unified Extra Fine Series
UN	Means Uniform Pitch Series
UNM	Means Unified Miniature Series
NC	Means National Coarse Series
NF	Means National Fine Series
UNR	Means Unified National Round

Head shapes

Socket head cap screw (SHCS)

Set screw

Driving a fastener

Round Head Slotted Screw with Atet ah

Round Head Phillips α

3".......	100...902/6A3054	9.38
$1 / 4 / 20$		
$1 / 4^{\prime \prime}$	100 _ . 90276A533	4.10
$5 / 16^{\prime \prime}$	100_..90276A534	7.25
$3 / 8{ }^{\prime \prime}$	100...90276A535	2.30
$1 / 2^{\prime \prime}$	100...90276A537	2.30
$5 / 8^{\prime \prime}$	100...90276A539	2.82
$3 / 4{ }^{\prime \prime}$	100...90276A540.	3.09
$7 / 8^{\prime \prime}$	100...90276A541	3.76
$1^{\prime \prime}$	100...90276A542	3.10
$11 / 8^{\prime \prime}$	100...90276A543	5.03
$11 / 4^{\prime \prime}$	100 ${ }^{\text {a }}$ 90276A544	3.00

McMaster-Carr

 www.mcmaster.comName the Fastener:

Name the Fastener:

Convention for screws

"SCHEMATIC"

"SIMPLIFIED"

Convention for threaded holes

FRONT
SECTION

Blind threaded holes

Countersunk holes

Counterbored holes

Other Items for Drawings

Leaders \& notes

TITLE BLOCKS

- Basic
- Title
- Name
- Date
- Units
- Optional
- Company name, sheet number, scale, tolerances, material, finish....
- Follow your company standards

A title block with more information

CHOPPING SIMULATOR	TOP PLATE	
	MATERIAL: MILD STEEL	
Designed by W. Durfee 612-625-0099 wkdurfee@umn.edu	SCALE: 0.500	DIMENSIONS IN INCHES
	DRW by: WKD	DATE: I6-JuI-03

A title block using a company template

Production Drawings

Many types of drawings can be produced from the CAD database

